Geological discontinuity persistence: Implications and quantification

J. Shanga,⁎, L.J. Westb, S.R. Hencherb,c,d, Z. Zhaoa

a Nanyang Centre for Underground Space, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
b Engineering Geology and Hydrogeology Group, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
c Department of Earth Sciences, University of Hong Kong, Hong Kong, China
d Hencher Associates Limited, Ilkley, United Kingdom

\textbf{A R T I C L E I N F O}

\textbf{Keywords:}
Discontinuity persistence
Incipient discontinuity
Rock bridges
Geophysics
Rock mass strength

\textbf{A B S T R A C T}

Persistence of geological discontinuities is of great importance for many rock-related applications in earth sciences, both in terms of mechanical and hydraulic properties of individual discontinuities and fractured rock masses. Although the importance of persistence has been identified by academics and practitioners over the past decades, quantification of areal persistence remains extremely difficult; in practice, trace length from finite outcrop is still often used as an approximation for persistence. This paper reviews the mechanical behaviour of individual discontinuities that are not fully persistent, and the implications of persistence on the strength and stability of rock masses. Current techniques to quantify discontinuity persistence are then examined. This review will facilitate application of the most applicable methods to measure or predict persistence in rock engineering projects, and recommended approaches for the quantification of discontinuity persistence. Furthermore, it demonstrates that further research should focus on the development of persistence quantification standards to promote our understanding of rock mass behaviours including strength, stability and permeability.

1. Introduction

Geological discontinuities are of great importance for strength, deformability and permeability of rock masses. Characterisation of discontinuity geometry (i.e. aperture, persistence, length and spatial connectivity) is the first step to understanding the overall behaviour of rock masses. Early references to discontinuity persistence include those of Jennings (1970) and Einstein et al. (1983), and the summary publication by the International Society for Rock Mechanics and Rock Engineering (ISRM, 1978).

It is difficult to quantify true persistence due to the intrinsic three-dimensional nature of discontinuities within rock masses and the number of studies that have attempted to quantify this parameter has been relatively small. Some techniques have been developed in recent years, for example, geophysical detection (e.g. Heike et al., 2008; Deparis et al., 2011), surface terrestrial laser scanning (e.g. Sturzenegger and Stead, 2009a; Tuckey and Stead, 2016) and the forensic excavation of rock masses (e.g. Shang et al., 2017a). Modelling the inevitable uncertainty in the fracture network is addressed in FracMan by Diershowitz and colleagues at Golder Associates and by Monte-Carlo simulation (e.g. Wang et al., 2016).

The purpose of this paper is to consider the implications of discontinuity persistence on the mechanical properties of individual discontinuities, strength and stability of rock masses and to review the available techniques to quantify this parameter. Several recommendations for future research are included in this paper. Several recommendations for future research are included in this paper.

2. Definition

2.1. Incipient and mechanical geological discontinuities

Geological discontinuity is normally recognised as a general term to describe any mechanical break (lacking significant tensile strength) within rock masses, including most joints, weak bedding planes, weakness zones and faults (ISRM, 1978). This definition however does not apply to incipient traces, regardless of strength, although such traces are often recorded during discontinuity logging in the outcrop (Hencher, 2014, 2015). This common practice leads to underestimation of strength of rock masses, and overestimation of permeability. It can considerably increase expenditure on rock support systems and also influence reliable prediction of water, oil and gas extraction. As a first step, it is therefore practically and theoretically important to differentiate the degree of incipiency of discontinuities in terms of their tensile strength (Hencher, 2014; Shang et al., 2016).

Incipient discontinuities may have considerable tensile strength as a result of their partial development, secondary mineralization or...
cementation. This concept is illustrated by Fig. 1, in which a sub-vertical incipient rock joint terminates in rock. Characterising the horizontal traces, would generally be disregarded in rock mass characterisation, but these clearly represent a weakness.

Incipient rock discontinuities often develop over geological time into full mechanical discontinuities (Hencher, 2014) with zero tensile strength as defined by ISRM (1978). Fig. 2 shows rock cores with strong incipient traces and zero-tensile strength mechanical joints; these discontinuities can be differentiated on the basis of relative tensile strength of the parent rock (Hencher, 2014; Shang et al., 2015, 2016). Fig. 3 shows different development stages of incipient joints on a face cut by a diamond wire saw. Joints can be seen as linear traces stained with iron oxides. These joints were evidently formed from brittle fracture propagation at a late stage during cooling/emplacement of this granite, as can be interpreted from cross-cutting relationships and the geometrical association of some joints with mineral differentiation (as indicated by 1, in an area washed clean with water). Note that some of the joint traces terminate as visible features, as indicated at 2. Note that one of the shallowly dipping joints, has an open aperture locally (indicated by 3) allowing seepage of groundwater, indicating partial development to a full mechanical discontinuity. Hence, it is proposed that the incipient joint pattern represents a “blueprint” that, given time and appropriate conditions, will develop as interconnecting true, mechanical discontinuities in the sense defined by ISRM (1978).

2.2. Rock bridge and discontinuity persistence

The term “rock bridge” is defined as an area of intact/strong rock material separating coplanar or non-coplanar discontinuities in rock masses (Kim et al., 2007b; Zheng et al., 2015). Rock bridges usually occupy a part of the planar joint plane (Dershowitz and Einstein, 1988); such rock bridges in coplanar joints are the focus of this review.

True discontinuity persistence is the areal extent of a rock

Fig. 1. Partially developed discontinuities that are incipient (non-persistent), Horton-in-Ribbesdale, Yorkshire, England.

Fig. 2. (a) Section of andesitic tuff cores (Hong Kong) with incipient and mechanical discontinuities and (b) Same core (disassembled). Relative tensile strength, i.e., high, moderate and weak strength relative to the strength of the parent rock, is proposed to differentiate these discontinuities. Adapted from Hencher (2014).

Fig. 3. A Face cut by a diamond wire saw in dimension stone quarry in granite near Tui, Galicia, Spain. Joints 1 and 2 are in earlier incipient stages (which are always poorly defined by current standards). Joint 3 is in later incipient stage and it has a persistent area partially, allowing seepage of fluid. After Shang et al. (2016).
discontinuity. Fig. 4a illustrates the areal discontinuity persistence \((K) \), which is defined as the fraction of continuous discontinuity area \((\text{Einstein et al., 1983})\) whereby:

\[
K = \frac{\sum \left(I - A_b \right)}{A_b}
\]

(1)

where \(I \) is the total area of scattered rock bridges and \(A_b \) is reference gross area including rock bridges and continuous joint segments. The above definition implies that a planar discontinuity follows a predefined weakness plane. For this type of geometry, the effects of the incipient parts of the discontinuity represented by rock bridges have been investigated in stability analysis. For example in a recent work reported by Bonilla-Sierra et al. (2015), effects of the spatially distributed rock bridges along a preferential sliding plane was investigated. In reality, however, linear persistence \((K_i)\); see Fig. 4b, is often used as an approximation of areal persistence \((\text{Einstein et al., 1983})\); this is defined as a linear ratio of sum of joint segments \((\Sigma L_i)\) and the total length of coplanar given line \(L \).

\[
K_i = \frac{\sum L_i}{\Sigma L_i + B_i}
\]

(2)

This definition has been widely used in experimental, analytical and numerical studies (e.g. Lajtai, 1969a, 1969b; Jennings, 1970; Zhang et al., 2006; Prudencio and Van Sint Jan, 2007; Ghazvinian et al., 2012; Bahaddini et al., 2013; Shang et al., 2013; Jiang et al., 2015).

ISRM (1978) suggested a classification scheme for persistence by measuring length \((L)\) of joint trace formed by the intersection of a joint within an exposure. In that scheme, five categories comprising very low persistence \((L < 1 \text{ m})\), low persistence \((1 \text{ m} < L < 3 \text{ m})\), medium persistence \((3 \text{ m} < L < 10 \text{ m})\), high persistence \((10 \text{ m} < L < 20 \text{ m})\) and very high persistence \((20 \text{ m} < L)\) were provided. That scheme however only provides a description of discontinuities on a finite rock exposure (Norbury, 2010) and ignores the problem of joint sections that maintain strength.

The above definitions (based on coplanar discontinuities) mainly focus on the geometrical properties of single discontinuities without consideration of stress concentration around fracture tips (Kevin, 1980; Wasantha et al., 2014). Some studies considered the stress influence on degree of discontinuity persistence: Wasantha et al. (2014) is an example in which a new parameter was developed to define persistence, considering stress distributions, however it is still difficult for the practical application in rock engineering. It is noted that there is also a difference (in definitions of persistence) between industries and universities (for example, nearly four decades ago, the term “joint continuity”, rather than “persistence”, was used in the joint survey in the Feitsui Reservoir Project, Taiwan, which is probably due to its simplicity). In this review, the term “areal persistence” (Eq. (1)), reflecting the three dimensional nature of discontinuities, is recommended to be used to describe discontinuity which is the best measure of persistence.

3. Mechanical properties of individual discontinuities

Tensile or shear failure of incipient discontinuities is often the “final straw” leading to instability of rock masses, which usually occurs in response to a number of triggers including temperature and insolation (Brian and Greg, 2016), precipitation (Wieczorek and Jager, 1996), weathering (Borrelli et al., 2007; Tating et al., 2013; Goudie, 2016) and seismic loading (Cravero and Labichino, 2004). In exposures and tunnel roofs, many overhanging and threatening rock blocks or slabs (Fig. 5) only remain in place because of the strength of incipient discontinuities mainly arising from rock bridges (Paolo et al., 2016). The area of rock bridge can only be viewed after collapse (see for example in Fig. 6) when strength of revealed bridges can be back analysed (Paronuzzi and Serafini, 2009).

Shang et al. (2016, 2017c) investigated the tensile strength of incipient rock discontinuities in the laboratory. They demonstrated that incipient traces can have considerable tensile strength, and can be differentiated using relative tensile strength to that of parent rock, as originally proposed by Hencher (2014). Based on the laboratory findings by Shang et al. (2015, 2016), a further numerical investigation of...
the direct tensile behaviour of laminated and transversely isotropic rocks was recently presented by Shang et al., 2017b, in which the incipience of bedding planes (relative tensile strength to that of parent rock) was considered.

Many investigations have been undertaken to measure the shear strength of discontinuities, mostly focusing on mechanical discontinuities with zero true cohesion (Barton, 1976). For non-filled and persistent rock joints, shear strength is however controlled by four components including fundamental shear strength of rock bridges (Shang et al., 2018a), internal friction in solid bridges (after rock bridges are mobilized), friction from the persistent joint segments (Lajtai, 1969b) as well as geometry and location of bridges (Ghazvinian et al., 2007). An equivalent shear strength calculation method was developed based on the Mohr-Coulomb failure criterion, in which strength contributions from rock bridges and persistent joint areas are linearly combined (Lajtai, 1969a; Hudson and Harrison, 2000) as expressed by the following equation:

$$\tau = c_\text{i} + \sigma \cdot \tan \phi_\text{i} = [K_L c_B + (1 - K_L) c_p] + \sigma [K_L \cdot \tan \phi_p + (1 - K_L) \cdot \tan \phi_p]$$

(3)

where τ and σ are shear strength of incipient rock joints and normal stress; c_i and ϕ_i are the equivalent cohesion and internal friction angle of incipient rock joints; c_p and ϕ_p are the cohesion and internal friction angle of persistent joint; c_B and ϕ_B are the cohesion and internal friction angle of intact rock bridges; K_L is the linear persistence in the direction of shearing.

This equation tends to overestimate the shear strength as it assumes that rock bridges and friction of persistent joint areas are mobilized simultaneously, that is at the same deformation (Lajtai, 1969a). In addition, the Mohr-Coulomb criterion is only applicable to smooth joint surfaces; it only describes rough joints under relatively low normal stress level; Eq. (3) thus has limited usefulness in practice.

Rock bridges significantly increase the shear strength of individual incipient rock discontinuities (Shang et al., 2018a), especially under constant normal stiffness boundary conditions (Shang et al., 2018b). They effectively produce a strength reserve and that is mobilized prior to failure occurring along the incipient joint plane (Jennings, 1970; Simpson, 1978; Gehle and Kutter, 2003; Paolo et al., 2016). Hencher (1984) by undertaking a direct shear test on an incipient tuff joint at the core scale (54 mm in diameter) with an areal persistence of around 86% found that the rock bridge on the incipient joint plane produced a cohesion of 750 kPa. At a larger scale, a rock bridge having a size of about 150 mm × 300 mm was identified by Paolo et al. (2016) after collapse of a limestone wedge (tetrahedral block with a volume of around 28 m³) at the Rosandra valley, north-eastern Italy. Cohesion of the bridge was back-calculated to be around 2.4 MPa (cohesion of the intact rock is 25 MPa). It is however rare to see laboratory shear testing on natural incipient rock discontinuity as it is not straightforward to secure and prepare groups of natural rock samples containing incipient discontinuities.

Numerical analysis has been used as an alternative to examine the shear strength of non-persistent rock joints, for example, using Itasca Particle Flow Code (e.g. Cundall, 1999; Park and Song, 2009; Ghazvinian et al., 2012; Shang et al., 2018b) and Rock Failure Process Analysis code (e.g. Zhang et al., 2006). In numerical analysis, non-persistent rock joints containing rock bridges with different geometrical parameters are readily analysed (Shang and Zhao, 2017; Shang et al., 2018a); the brittle failure of rock bridges often lead to a dramatic drop in shear strength (Fig. 7). Shear strength of incipient rock joints generally increases when persistence value decreases, and it also varies with spatial scale of rock bridges, as illustrated by Fig. 5 in which numerically simulated shear strength of three incipient rock joints with the same areal persistence ($K = 0.5$) varied. Such scale dependent of strength arises from variations in the stress distribution (Rao et al., 2003) and therefore mode of fracture initiation and propagation.

4. Implications for the strength and stability of rock masses

4.1. Block size and volume for rock masses with non-persistent joint

The intersections of discontinuities in rock masses leads to discrete blocks with variable geometries (Maudon, 1994; Kalenchuk et al., 2006), especially when discontinuities are not fully persistent. Publications accounting for discontinuity persistence and its influence on the rock block size and volume are discussed below.

Assessing rock block size and volume can be roughly categorized into three groups such as index evaluation (e.g. ISRM, 1978; Sen and Eissa, 1992), image-based measurement (e.g. Panek, 1981; Maerz, 1996), and model dissection (e.g. Goodman and Shi, 1985).

For rock masses containing several sets of persistent rock joints, rock block volume (V) within a representative rock mass can be empirically calculated by:

$$V = \frac{S_1 S_2 S_3 \cdots S_n} {S_{l1} S_{l2} S_{l3} \cdots S_{l1}}$$

(4)
where S_i and α_i are joint spacing and angle of inclination for each joint set, respectively \cite{Cai et al., 2004; Palmström, 2005}.

Block volume calculated by Eq. (4) is an estimation of real rock block volume on the assumption that discontinuities are fully persistent. This approximation tends to be more problematic when the scale of rock mass increases \cite{Lu and Latham, 1999}. Rock bridges in fractured rock masses lead to irregular rock block shapes and larger rock block size \cite{Longoni et al., 2012}. An equivalent spacing S'_i for incipient rock joints can be defined as \cite{Cai and Horri, 1992}:

$$S'_i = \frac{S_i}{\sqrt{K_i}}$$\hspace{1cm}(5)

where K_i is joint persistence for each joint set i.

Thus the equivalent rock block volume can be expressed by the following equation:

$$V = \frac{S_1S_2S_3\cdots S_i}{\sqrt{K_1K_2K_3\cdots K_i}} \cdot \sin \alpha_1 \sin \alpha_2 \sin \alpha_3 \cdots \sin \alpha_i$$\hspace{1cm}(6)

It has been accepted that block size and volume are sensitive to discontinuity persistence \cite{Rogers et al., 2007; Elmouttie and Poropat, 2012} and block volume increases when persistence decreases \cite{Kalenchuk et al., 2006}. Numerical modelling allows the sensitivity of block volume to persistence to be investigated quantitatively \cite{Kim et al., 2007b, 2007c}. In Fig. 9, S represents simulation cases that the SDs of joint spacing and angle are within 30% of the mean value.

Normalised rock block size (Fig. 9a) and volume (Fig. 9b) decreased when discontinuity persistence increased, asymptotically approaching unity for fully persistent discontinuities. However it should be noted that the reciprocal relationships shown in Fig. 9 depended on the specific discontinuity orientations and number of joint sets (two sets) used in the simulation. In real projects, lithology and geological conditions should also be considered in the assessment of rock mass properties.

4.2. Mechanical properties and deformability of non-persistently jointed rock masses

4.2.1. Influence of persistence on rock mass behaviour

Many factors control the overall mechanical properties of a rock mass which include intact rock matrix strength \cite{Hu et al., 2012a}, geometrical and mechanical properties of discontinuities, discontinuity intersections (stress distribution varies with the number and arrangement of discontinuities, Mughieda, 1997) and the interactions between discontinuities and rock matrix (such as block interlocking). There have
been several classic rock mass classification schemes, for example, RMR (Bieniawski, 1973, 1989), Q system (Barton et al., 1974) and GSI (Hoek et al., 1995), to assess the strength of rock masses. Generally, these classification schemes are empirically developed to provide a guidance for engineering support (except for GSI, which was semi-empirically designed for rock mass strength estimation) based on engineering projects and laboratory data (Hu et al., 2012b). A specific value considering different influential factors is assessed and calculated to reflect the quality of rock masses. Nevertheless, these schemes fail to explicitly consider the influence of persistence in the mass strength determination. For example, in GSI system, discontinuity persistence is only indirectly considered by the interlocking descriptor (Cai et al., 2004); essentially discontinuities are assumed fully persistent. GSI therefore tends to underestimate the overall strength of a rock mass, especially at high confinement where interlocking effects are strong (Bharani and Kaiser, 2013). Rock quality designation (RQD), originally introduced by Deere (1963) for the use in core logging, is one of the key parameters used in RMR and Q system. Sound core pieces > 100 mm in length are summed and expressed as a percentage of total core run. RQD however was devised to include only fully developed discontinuities with zero tensile strength, so when incipient joint traces (which have considerable tensile strength) are also included in the assessment, rock mass strength is underestimated (Hench, 2014, 2015; Pells, 2017).

Prudencio and Van Sint Jan (2007) conducted laboratory tests on physical models of non-persistently jointed rock mass under biaxial loading condition. A set of non-persistent rock joints was made by inserting steel sheets into the mortar mixture during sample preparation. One of the key findings is that rock mass failure modes and compressive strength depended on the geometry of the discontinuity, loading stresses, and ratios of principle and intermediate stresses. Three basic failure modes were identified (i.e. failure through incipient joint plane, stepped failure and rotational failure of rock blocks).

Numerical modelling has been used to investigate the influence of persistence on overall mechanical properties of jointed rock masses. Kim et al. (2007a, b, c) examined how the incipient discontinuities with varying persistence values affect the mechanical properties of jointed rock mass. UDEC and 3DEC codes combined with experimental approaches were used in their study. Shear and compressive strengths of a jointed rock mass with and without considering persistence (represented as t, t_0, a, and a_0, respectively, with the zero subscript indicating fully persistent case) were studied, while GSI values with and without considering persistence were calculated using the quantitative approach proposed by Cai et al. (2004). Normalised ratios found from Kim et al. (2007a, 2007b) including t/t_0, a/a_0 and GSI/GSI0 are plotted against discontinuity persistence (see Fig. 10). It can be seen that normalised shear strength (red curve) of jointed rock masses dramatically decreases when persistence increases. The analysis shows that the shear strength of rocks can be underestimated dramatically if persistence is ignored in the rock mass strength assessment. The normalised compressive strength (blue curve) and normalised GSI value (green curve) against persistence also show that the assumption of full persistence leads to strength underestimation by a smaller extent, i.e., by about up to 1.5 times for each case.

Following their laboratory investigation of discontinuity geometry (Prudencio and Van Sint Jan, 2007), the PFCD3D code was used to investigate the effect of discontinuity persistence on the failure mechanism of jointed rock masses (Bahaaddini et al., 2013). Compressive strength and elastic modulus of rock masses with multiple layers of coplanar non-persistent discontinuities were examined (Fig. 11). In their study, persistence varied from 0.5 to 0.8 while other geometrical parameters were set to be constant except for the dip angle β, which varied from 0° to 90°. Their numerical results are reproduced in Fig. 12, with corresponding failure modes of samples when $K = 0.5$ and $\beta = 90^\circ$. Compressive strength and elastic modulus of the rock mass decreased when persistence increased, for the same dip angle relative to the loading axis. Tensile cracks dominated at low persistence but decreased dramatically when persistence increased from 0.5 to 0.8 (see the insert diagrams of $\beta = 90^\circ$, Fig. 12a). This phenomenon can be attributed to the reduction of the number of joint tips. A further investigation was reported by Bahaaddini et al. (2016); a similar methodology was used and similar results were arrived at to those plotted in Fig. 12.

4.2.2. Rock slope stability considering non-persistent discontinuities

Non-persistent rock discontinuities have significant influence on the mechanical properties and deformability of rock masses and therefore on the stability of rock engineering projects such as engineered rock slopes. Large rock volumes (compared with joint spacing) can contain many discontinuities and therefore complex stress distributions, especially where discontinuities are randomly distributed. A challenging difficulty confronting practitioners is how to consider the incipiency of discontinuities in large-scale stability analysis. In addition, the gradual development and coalescence of discontinuities over engineering time may have profound effects on stability. An illustrative example was presented by Hencher (2006), in which progressive development of sheeting joints over a period of many years was observed prior to the detachment of a large landslide in Hong Kong.

Einstein et al. (1983) proposed a probabilistic criterion for failure that was related to discontinuity data, to examine the effect of discontinuity persistence on rock slope stability. Only one set of parallel discontinuities with varying persistence was examined in their study. The “critical path” for a given discontinuity geometry (including
coplanar and non-coplanar joint planes, such as en echelon) was defined to consider strength contributions from discontinuities and intervening rock bridges as well as the spatial variability of discontinuity geometry. For this “critical path” they defined a minimum safety margin, SM, as the ratio of available resisting force to driving force. The SLOPESIM code was utilized to find the paths of minimum SM and achieve probabilistic failure analysis of a jointed rock slope. In addition, the effect of probabilistic distribution of persistence was investigated using a parametric method.

The notion of representative volume element (RVE) of jointed rock masses was proposed by Pariseau et al. (2008) aiming to simultaneously enhance the reliability of large-scale rock mass stability analysis and dramatically reduce computer run time, from hundreds of hours to several hours. The RVE of a non-persistently jointed rock mass represents the smallest volume over which a measurement can be made that will yield a value representative of the whole. In this study, the stability of engineered open pit slopes was investigated by utilizing a finite element modelling technique in which RVE were recognised for a given discontinuity geometry, rather than modelling individual discontinuities. Equivalent discontinuity properties (Pariseau et al., 2008) were calculated for a given persistence for each set of discontinuities within the RVE, and then employed in the slope stability analysis. The main contribution of RVE approach is that numerous non-persistent discontinuities within a rock mass at project scale can be effectively dealt with.

In another study of the effect of incipiency on rock mass strength

Fig. 12. Effects of discontinuity persistence on relative compressive strength of rock masses (a) and on relative elastic modulus of rock masses (b). Note that yellow is rock matrix in PFC model; green is non-persistent rock joint; red is tension crack and blue is shear crack (rarely can be seen). K refers to linear persistence. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Adapted from Bahaaddini et al. (2013).
behaviour, Bonilla-Sierra et al. (2015) proposed a method combining a probabilistic approach (assuming the distribution of the rock bridges along the sliding plane follows a fractal distribution law) using the discrete element method (DEM), to investigate translational sliding failure along a single incipient discontinuity within rock slopes. Three different sliding block geometries were investigated, that is, with block centres of gravity located in the upper part (Fig. 13a), lower part (Fig. 13b) and middle of sliding block (Fig. 13c), respectively. For each situation, three different dip angles (30°, 50°, and 70°) were used. The dominant slope failure mode (indicated by extent of shear versus tensile crack development) was found to be dependent on the slope geometry (dip of slope and centre of gravity) and discontinuity persistence (Fig. 13). For all situations, tensile and shear cracking increased dramatically when persistence decreased which confirms the finding by Bahaaddini et al. (2013) that higher tensile cracking arises from lower discontinuity persistence. For configurations where centres of gravity were located in the upper (see the schematic diagram in Fig. 13a) and middle section of the sliding block (see the schematic diagram Fig. 13c), shear cracks predominate, especially for a small dip angles i.e., 30° where pure shear failure occurred. For higher dip angles, rock slopes often fail in both tensile and shear cracking.

5. Quantification of rock discontinuity persistence

As discussed earlier, the influence of persistence on rock mass mechanical behaviour has long been known but generally has been dealt with crudely. Currently, there are no recommended methods to measure or predict discontinuity persistence. An approximation to real discontinuity size can be derived from measured trace length from rock exposures after correcting the sampling bias (e.g. Baecher et al., 1977; Priest and Hudson, 1981; Rawnsley, 1990; Mauldon, 1998; Zhang et al., 2002; Latham et al., 2006) but with inherent limitations.

5.1. Discontinuity data collection and size estimation

Data acquisition of discontinuities from exposed rock faces, can be grouped into two categories: manual methods (i.e. scanline sampling and window sampling) and computer-aided methods.

5.1.1. Scanline and window sampling methods

At planar or nearly planar rock exposures, statistical sampling methods including scanline and window approaches have been widely used to measure the extent of discontinuities intersected. In straight scanlines, a tape is laid along rock face, and the joint
traces intersecting the line in a scanline survey are recorded. In practice, surveys including between 150 and 350 discontinuities are suggested and colour photos of exposed rock faces and scale makers are useful (Hudson and Priest, 1979). Scanline surveys may be grouped into two categories: quick scanline and detailed scanline. For a quick scanline survey, only the location of the scanline, the chainage of each intersection, plunge and azimuth of joint traces are recorded. Detailed scanline surveys normally also include, discontinuity types (e.g. joints, bedding, foliation, lamination and cleavage), trace length, aperture and infilling condition, planarity, waviness, termination and water condition (any evidence of seepage). A good example template of detailed scanline survey is produced by Hencher (2015), in which relative strength to parent rock was additionally suggested to be considered.

Fig. 14 diagrammatically shows a scanline survey on a planar rock face of limited extent. This survey is subject to some drawbacks, for example, sampling biases, orientation bias and censoring bias, which have been noted by many researchers (e.g. Cruden, 1977). These biases are summarised as follows:

(1) Size bias. Scanlines will preferentially identify those discontinuities with a longer trace length, and small traces on exposures are missed (Priest and Hudson, 1981).

(2) Orientation bias. Discontinuities striking roughly parallel to the scanline will be under-represented and excluded from the sampling results. This will lead to a serious misinterpretation of discontinuity extent as some critical information is omitted. Park and West (2002) verified and emphasised the orientation bias based on the examination of the differences in results from vertical borehole fracture mapping method and horizontal scanline sampling. Selection of several scanline directions in the measurement of trace length can, to some extent, eliminate the orientation bias and it is recommended that scanlines should be measured in each orthogonal direction (Priest, 1993; Hencher, 2015).

(3) Censoring bias. Rock exposures are limited and relatively small compared with major joints. Inevitably for large discontinuities, one end or both ends, may extend beyond the visible exposure, therefore they are censored to some degree depending on discontinuity size (Cruden, 1977). The censoring bias should be considered in the inference of discontinuity size (Baecher, 1980).

Window sampling, another manual data acquisition technique, has also been used for sampling the discontinuities exposed at a given rock face. The preliminaries and measurement techniques are similar to scanline survey except that all discontinuities are measured in a finite area, rather than the intersection of the scanline. For setting up window sampling, a rectangle or circular area is defined on the outcrop. The window should be sufficiently large to reduce the sampling bias, with each side intersecting between 30 and 100 discontinuities. Discontinuities are counted and classified into three classes (Pahl, 1981; Zhang and Einstein, 2010):

(1) Discontinuities contained in the window: both ends of discontinuities are visible in the sampling domain.

(2) Discontinuities that transect the window: both ends of discontinuities are invisible in the sampling domain, this is, ends beyond the limits of window.

(3) Discontinuities that intersect the window: only one end is visible in the window and another one beyond the limits of sampling area.

Although window sampling still suffers from the censoring issue, this method normally is able to eliminate size and orientation biases (Mauldon and Dunne, 2001). In addition, discontinuity termination characteristics can also be logged by using window sampling (Dershowitz and Einstein, 1988), but it does not provide any information about discontinuity orientation or surface geometry (Priest, 1993).

Manual data acquisition methods suffer from some limitations. The first is that they are labour and time consuming. In order to minimise the sampling bias, sampling should be conducted at many different locations. The operator's safety during sampling is another issue. The second is that unbiased discontinuity characterisation requires a skilled interpretation (rock engineer or geologist). The third limitation is that manual methods cannot collect data from rock exposures that are not accessible. So researchers have paid a lot attention to producing alternative ways to obtain discontinuity data from outcrop.

5.1.2. Computer aided sampling

Computer aided sampling methods for discontinuity characterisation have made significant advances over the last 25 years. An image analysis technique, perhaps the pioneer work towards this topic, was proposed by Ord et al. (1991) to describe discontinuities in outcrop automatically. Since then, computer-aided techniques have been developed. Roberts and Poropat (2000) proposed a digital photogrammetric technique to investigate three dimensional models of rock faces. Feng et al. (2001) proposed a portal system, in which a laser range finder was used, to identify discontinuities in outcrop. Several computer aided techniques including digital photogrammetry (e.g. Tuckey and Stead, 2016), ground-based LiDAR (e.g. Mattew and Malte, 2012), and digital trace mapping (Tuckey et al., 2012) have been applied to develop a standardized and adaptable methodology for assessing discontinuity persistence. An example among these techniques is shown in Fig. 15 (Tuckey et al., 2012), in which the image processing code Image-J was used to trace discontinuities and infer rock bridges. The results of the study were used to supplement field window sampling. Umili et al. (2013) developed an automatic method to map and identify discontinuity traces based on a digital surface model (DSM), which consists of a triangulated point cloud that approximates the true surface. Terrestrial Laser Scanner (TLS) and Terrestrial digital photogrammetry (TDP) have also been widely used in characterising discontinuities and rock face morphology (e.g. Rosser et al., 2005; Sturzenegger and Stead, 2009a, 2009b; Slob, 2010; Sturzenegger et al., 2011; Brideau et al., 2012). Abellan et al. (2014) comprehensively reviewed the application of TLS technique to rock exposure characterisation. These methods are generally based on the segmentation of the rock exposures, and discontinuity characteristics are obtained from the boundaries and orientations of the identified planes (Umili et al., 2013).

Data collected is statistically examined and is used for the rock mass characterisation.

5.1.3. Discontinuity size estimation from censored measurements

Discontinuity size is often estimated based on censored sampling...
errors will occur (Baecher et al., 1977). Table 1 presents a selection of well formulated probability sampling planes should be used otherwise estimate of the true discontinuity size (or trace length) distribution. Trace lengths need to be corrected for sampling biases to provide an measure of areal persistence.

5.2. Discontinuity persistence in the subsurface

Geophysical techniques have been used to investigate discontinuities in the subsurface (e.g. Grandjean and Gourry, 1996; Willenberg et al., 2008; Kana et al., 2013). The paper by Longoni et al. (2012) provided illustrating insights into the application of radar in the investigation of subsurface discontinuity persistence. In their work, ground penetrating radar surveys were conducted to image the 3D discontinuity planes inside rock mass, thereafter discontinuity persistence was calculated. Geological discontinuities in the subsurface are usually complex thus sometimes will frustrate geophysical sampling, geophysical approaches requires a high resolution to be able to sample discontinuities as these are relatively thin, and an experienced operator is also needed to process and interpret discontinuities within radar datasets.

5.3. Forensic excavation of rock masses

In a recent work reported by Shang et al. (2017a), a new technique, termed forensic excavation of rock masses (FERM), was introduced as an approach for investigating discontinuity areal persistence. Fig. 16 shows the FERM testing procedures. This technique involves non-explosive excavation of rock masses by injecting an expansive grout along incipient discontinuities. The agent causes the incipient rock discontinuity traces to open as open joints, thus allows the observation of areal joint surfaces and determination of areal persistence. Laboratory and field tests has been conducted on two lithologies (Midgley Grit Sandstone and Horton Formation Siltstone) by the authors, which demonstrated that FERM allows measurement of areal persistence at laboratory scale and field scale over the range of a few meters. Project scale tests will hopefully to be conducted to verify the capability of FERM at larger scales.

6. Summary, conclusion and recommendations for future research

6.1. Summary and conclusion

It has been nearly four decades since awareness of the importance of discontinuity persistence in earth science applications (Bridges, 1976; Cruden, 1977; ISRM, 1978). Some endeavours have been made to consider persistence during the measurement of discontinuities (e.g. ISRM, 1978; Priest and Hudson, 1981; Latham et al., 2006) and in the assessment of rock mass stability (e.g. Einstein et al., 1983; Pariseau et al., 2008). These endeavours however have not led to standard methods to quantify real persistence. This review has described the fundamentals of this topic e.g. definitions (incipient, mechanical discontinuities and persistence), mechanical properties of individual rock discontinuities, and those of rock masses containing non-persistent joints. State-of-the-art methodologies in the description and quantification of discontinuity persistence were summarised and reviewed.

Areal persistence, reflecting the three dimensional nature of geological discontinuities, is the best measure of persistence. Studies aiming at quantification of discontinuity persistence have been relatively few in number. In rock engineering practice, “geological judgements” are often used, but these can fail to represent the three dimensional nature of discontinuities, for example where linear persistence is used to represent areal persistence.

The size and volume of rock blocks within rock masses are sensitive to discontinuity persistence and will be underestimated if 100% persistence is assumed. Geometrical considerations based on uniform joint spacing imply a reciprocal cube-root relationship between discontinuity persistence and block size/block volume (Eq. (6)), whereas previous studies using more realistic spacing distributions suggest a reciprocal relationship i.e. $V_b/V_0 \sim K^{-1}$. However, the specific lithology and geological conditions should be considered in the assessment of rock mass properties based on persistence values.

Failure modes of a rock mass are generally controlled by the discontinuities. Studies show that discontinuity persistence, orientation and number of discontinuities overshadow the efficacy of other factors. Potential for sliding failure of rock slopes along planar discontinuities is mainly controlled by the persistence and orientation of discontinuities. In addition, the spatial distributions and geometries of intact rock bridges as well as mineral infills influence the mechanical properties of incipient discontinuities (Shang et al., 2016).

6.2. Recommendations for future research

The authors recommend some topics that might be taken up for future research. These are as follows:

(1) Current definitions of persistence (i.e., Eqs. (1) and (2)) only apply to planar discontinuities. Engineering applications based on the definitions will unavoidably have some limitations, as some discontinuities are not planar in shape (e.g., “zig-zag” and “en echelon” fractures). Thus, there is a need to define persistence for non-planar discontinuities; thereafter a full spectrum of discontinuity persistence is able to be quantified and implemented into engineering applications such as discrete fracture network modeling.

(2) Up to date, rock engineering practice lacks standard methods to deal with the incipiency of some discontinuities, i.e. those that are not fully developed mechanical break with some tensile strength. The degree of incipiency of discontinuities can be described by their tensile strengths relative to that of parent rock. Tensile strength is suggested because incipient discontinuity shear strength is...
Table 1
Representative contributions to discontinuity size (trace length) estimation from censored measurements.

<table>
<thead>
<tr>
<th>Methodologies</th>
<th>Major contributions</th>
<th>Remarks</th>
<th>Sampling methods</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Censored exponential distribution</td>
<td>Field procedure was devised to provide a method for characterising and estimating</td>
<td>The analysis does not consider type of discontinuity termination and</td>
<td>SS</td>
<td>Cruden (1977)</td>
</tr>
<tr>
<td></td>
<td>trace length. Data requirements dramatically reduced.</td>
<td>tends to overestimate larger trace length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moment estimate</td>
<td>Moment estimation of unconditional radius distribution of joints was presented.</td>
<td>Reliability of results depends on the probability function assumed.</td>
<td>SS</td>
<td>Baecher et al. (1977)</td>
</tr>
<tr>
<td>Probability distribution analysis</td>
<td>Four simple probability distributions were used to study bias in scanline sampling.</td>
<td>Reliability of results depends on the probability function assumed.</td>
<td>SS</td>
<td>Priest and Hudson (1981)</td>
</tr>
<tr>
<td></td>
<td>The relations between these distributions provide analytical methods of estimating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mean discontinuity trace length.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability distribution function</td>
<td>A technique was proposed for estimating mean trace length on infinite exposures.</td>
<td>Only applicable to discontinuities whose orientation is described</td>
<td>WS</td>
<td>Kulatilake and Wu (1984)</td>
</tr>
<tr>
<td>Distribution-free methods</td>
<td>Does not require lengths and density function of observed traces.</td>
<td>by a probability distribution function.</td>
<td>WS</td>
<td>Mauldon (1998)</td>
</tr>
<tr>
<td></td>
<td>Simple estimators were developed for the estimation of variably oriented fracture</td>
<td>Reliability of results depend on the probability function assumed;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability analysis, numerical</td>
<td>Joint trace length distribution was estimated for the Poisson disc joint model. Joint</td>
<td>Relies on the assumption that joint lengths are similar in strike and</td>
<td>WS</td>
<td>Song and Lee (2001)</td>
</tr>
<tr>
<td>and analytical methods</td>
<td>diameter distribution was also numerically and analytically investigated.</td>
<td>dip directions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stereological relation analysis</td>
<td>Stereological analysis used to estimate size distributions of elliptical discontinuity</td>
<td>Discontinuity assumed planar and elliptical in shape.</td>
<td>SS and WS</td>
<td>Zhang and Einstein (2010)</td>
</tr>
<tr>
<td>Maximum likelihood method</td>
<td>Extends previous methods to include arbitrary joint set and sampling plane orientations.</td>
<td>Derived results only apply for joint traces normal to top and bottom of sampling window.</td>
<td>WS</td>
<td>Lyman (2003)</td>
</tr>
<tr>
<td>Probability weighted moments (PWM)</td>
<td>A distribution-free method to estimate fracture trace length distributions in the light</td>
<td>–</td>
<td>WS</td>
<td>Li et al. (2014)</td>
</tr>
<tr>
<td>and L-moments</td>
<td>of the estimation of PWM and L-moments of true trace length.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SS: Scanline Sampling; WS: Window Sampling.
complicated by other factors, including roughness and asperities of the persistent sections. A classification scheme differentiating incipient of discontinuities has been conceptually proposed by Hencher (2014) with different bands including open fracture, weak, moderate and high. Direct tensile tests on incipient rock discontinuities have been conducted by Shang (2016) in the laboratory to follow up that topic. However, limited tests were involved due to the difficulty of the natural sample collection and preparation. It is therefore suggested that more tests need to be performed to facilitate the production of the classification scheme of discontinuity incipiency.

(3) In a recent study by Shang et al. (2017a), the quantification of areal persistence was attempted by “forensic excavation of rock masses (at block sale)”; this technique needs proof of concept at larger scales.

(4) Non-invasive quantification of persistence might also be achieved using geophysics, which if successful will improve the ability to predict rock mass properties.

Acknowledgments

The authors thank the editor-in-chief Dr. Janusz Wasowski and three anonymous reviewers for their valuable comments.

References

